Hybrid RANS/LES of a generic high-lift aircraft configuration near maximum lift

Author:

Probst Axel,Melber-Wilkending Stefan

Abstract

Purpose The paper aims to assess the feasibility of locally turbulence-resolving flow simulations for a high-lift aircraft configuration near maximum lift. It addresses the aspects of proper grid design and explores the ability of the hybrid turbulence model and the numerical scheme to automatically select adequate modes in different flow regions. By comparison with experimental and numerical reference data, the study aims to provide insights into the predictive potential of the method for high-lift flows. Design/methodology/approach The paper applies numerical flow simulations using well-established tools such as DLR's (German Aerospace Center) TAU solver and the SOLAR grid generator to study “Improved Detached Delayed Eddy Simulations” of the Japan Aerospace Exploration Agency (JAXA) Standard Model at two angles of attack near maximum lift. The simulations apply a hybrid low-dissipation low-dispersion scheme and implicit time stepping with adequate temporal resolution. The simulation results, including pressure distributions and near-wall flow patterns, are assessed by comparison with experimental wind-tunnel data. Findings Apart from demonstrating the general feasibility of the numerical approach for complex high-lift flows, the results indicate somewhat improved maximum lift predictions compared to the Spalart–Allmaras model, which is consistent with a slightly closer agreement with measured pressure distributions and oil-flow pictures. However, the expected lift breakdown caused by an increasing inboard separation in the experiment is not well captured. Originality/value The study not only provides new insight into the feasibility and promising potential of hybrid turbulence-resolving methods for relevant high-lift aircraft flows but also indicates the need for further research on the numerical sensitivities, such as grid resolution or flow initialization.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference19 articles.

1. Improvement of unstructured computational fluid dynamics simulations through novel mesh generation methodologies;Journal of Aircraft,2012

2. High-Lift device testing in JAXA 6.5m x 5.5m low-speed wind tunnel,2006

3. A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids;Journal of Computational Physics,2009

4. Automatic mesh generation for rapid-response Navier-Stokes calculations,2000

5. ‘Large-eddy simulation of practical aeronautical flows at stall conditions,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3