Abstract
Purpose
The purpose of this paper is to study the applications of Lie symmetry method on the boundary value problem (BVP) for nonlinear partial differential equations (PDEs) in fluid mechanics.
Design/methodology/approach
The authors solved a BVP for nonlinear PDEs in fluid mechanics based on the effective combination of the symmetry, homotopy perturbation and Runge–Kutta methods.
Findings
First, the multi-parameter symmetry of the given BVP for nonlinear PDEs is determined based on differential characteristic set algorithm. Second, BVP for nonlinear PDEs is reduced to an initial value problem of the original differential equation by using the symmetry method. Finally, the approximate and numerical solutions of the initial value problem of the original differential equations are obtained using the homotopy perturbation and Runge–Kutta methods, respectively. By comparing the numerical solutions with the approximate solutions, the study verified that the approximate solutions converge to the numerical solutions.
Originality/value
The application of the Lie symmetry method in the BVP for nonlinear PDEs in fluid mechanics is an excellent and new topic for further research. In this paper, the authors solved BVP for nonlinear PDEs by using the Lie symmetry method. The study considered that the boundary conditions are the arbitrary functions Bi(x)(i = 1,2,3,4), which are determined according to the invariance of the boundary conditions under a multi-parameter Lie group of transformations. It is different from others’ research. In addition, this investigation will also effectively popularize the range of application and advance the efficiency of the Lie symmetry method.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference22 articles.
1. Calculating potential symmetries and invariant solutions of BBM-burgers equation by Wu’s method;Journal of Inner Mongolia University,2006
2. Application of the symmetry classification to the boundary value problem of nonlinear partial differential equations;Acta Physica Sinica,2014
3. Local and nonlocal symmetries for nonlinear telegraph equation;Journal of Mathematical Physics,2005
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献