Author:
Hejri Saeid,Kamali Daryoush,Hasani Malekshah Emad
Abstract
Purpose
The purpose of this study is analysis of the natural convection and entropy production in a two-dimensional section of the considered heat exchanger. For this purpose, the lattice Boltzmann method which is equipped with Bhatnagar–Gross–Krook model is used. This model proposes a significant accurate prediction for thermal and hydro-dynamical behaviors over free convection phenomenon. The heat exchanger is filled with Fe2O3-water nanofluid. To improve the accuracy of prediction, it is neglected to use the theoretical models for properties of nanofluid. At this end, some experimental observations are conducted, and the required rheological and thermal properties of nanofluid are measured based on laboratory work..
Design/methodology/approach
The present work focuses on the influence of different factors on the thermal behaviors and entropy production of a heat exchanger. The heat exchanger is consisted by an inner tube, an outer tube and some fins which are implanted at the surface of inner tube.
Findings
The effects of various factors like structure of inner fins, nanoparticle concentration and Rayleigh number over the heat transfer rate, local and volumetric entropy production, Bejan number, flow configuration and temperature distributions are provided.
Originality/value
The originality of this work is using a new-developed numerical method for treating natural convection and experimental measurements for thermal and rheological properties of nanofluid.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献