Author:
Pandey Jyoti,Ansari Mohd. Zahid,Husain Afzal
Abstract
Purpose
Porous media can provide excellent performance in thermal energy transport applications. This study aims to optimise the square porous slabs (placed in the middle of the channel) parameters to enhance the cooling performance of the jet-impingement microchannel heat sink.
Design/methodology/approach
Three levels of each design parameters, i.e. porous slab side, porous slab height, type of material, permeability and quadratic drag factor, are studied; and an L27 orthogonal array is adopted to generate the design points in the specified design space. Optimum designs of the porous media slabs are achieved to minimise the maximum-wall temperature, thermal resistance and pressure drop and maximise the average heat transfer coefficient and figure of merit (FOM).
Findings
Results exhibited that the porous media material and permeability are the most, whereas drag factor is the least significant factors with respect to the overall performance of the heat sink. The optimum value of FOM for the proposed hybrid heat sink model belongs to the set of design variables, i.e. 0.4 mm slab side, 0.6 mm slab height, 5 × 10−11 m2 permeability, 0.21 drag factor and copper as substrate material.
Originality/value
This study proposes a novel design and a hybrid approach to investigate and optimise the hydrothermal performance of jet impingements on porous slabs inserted in the microchannels.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献