A parallel wavelet adaptive WENO scheme for 2D conservation laws

Author:

Schmidt Alex A.,Kozakevicius Alice de Jesus,Jakobsson Stefan

Abstract

Purpose The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme for solving 2D conservation laws, comparing efficiencies obtained with a previous message passing interface formulation for the same serial scheme and considering the same type of 2D formulations laws. Design/methodology/approach The serial version of the code is naturally suitable for parallelization because the spatial operator formulation is based on a splitting scheme per direction for which the flux components are numerically computed by a Lax–Friedrichs factorization independently for each row or column. High-order approximations for numerical fluxes are computed by the third-order essentially non-oscillatory (ENO) and fifth-order weighted essentially non-oscillatory (WENO) interpolation schemes, assuming sparse grids in each direction. The grid adaptivity is obtained by a cubic interpolating wavelet transform applied in each space dimension, associated to a threshold operator. Time is evolved by a third order TVD Runge–Kutta method. Findings The parallel formulation is implemented automatically at compiling time by the OpenMP library routines, being virtually transparent to the programmer. This over simplifies any concerns about managing and/or updating the adaptive grid when compared to what is necessary to be done when other parallel approaches are considered. Numerical simulations results and the large speedups obtained for the Euler equations in gas dynamics highlight the efficiency of the OpenMP approach. Research limitations/implications The resulting speedups reflect the effectiveness of the OpenMP approach but are, to a large extension, limited by the hardware used (2 E5-2620 Intel Xeon processors, 6 cores, 2 threads/core, hyper-threading enabled). As the demand for OpenMP threads increases, the code starts to make explicit use of the second logical thread available in each E5-2620 processor core and efficiency drops. The speedup peak is reached near the possible maximum (24) at about 22, 23 threads. This peak reflects the hardware configuration and the true software limit should be located way beyond this value. Practical implications So far no attempts have been made to parallelize other possible code segments (for instance, the ENO|-WENO-TVD code lines that process the different data components which could potentially push the speed up limit to higher values even further. The fact that the speedup peak is located close to the present hardware limit reflects the scalability properties of the OpenMP programming and of the splitting scheme as well. Consequently, it is likely that the speedup peak with the OpenMP approach for this kind of problem formulation will be close to the physical (and/or logical) limit of the hardware used. Social implications This work is the result of a successful collaboration among researchers from two different institutions, one internationally well-known and with a long-term experience in applied mathematics for industrial applications and the other in a starting process of international academic insertion. In this way, this scientific partnership has the potential of promoting further knowledge exchange, involving students and other collaborators. Originality/value The proposed methodology (use of OpenMP programming model for the wavelet adaptive splitting scheme) is original and contributes to a very active research area in the past years, namely, adaptive methods for conservation laws and their parallel formulations, which is of great interest for the entire scientific community.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference31 articles.

1. Introduction

2. A review of the parallel algorithms for solving multidimensional PDE problems;Journal of Applied Sciences,2010

3. Numerical approximation of oscillatory solutions of hyperbolic-elliptic systems of conservation laws by multiresolution schemes;Advances in Applied Mathematics and Mechanics,2009

4. Adaptive multiresolution WENO schemes for multi-species kinematic flow models;Journal of Computational Physics,2007

5. Casey, S.D. (2017), “How to determine the effectiveness of hyper-threading technology with an application”, available at: https://software.intel.com/en-us/articles/how-to-determine-the-effectivness-of-hyper-threading-technology-with-an-application/

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards parallel WENO wavelet methods for the simulation of compressible two-fluid models;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020;2022

2. Two-dimensional two-phase flow Riemann problem simulations using WENO wavelet methods;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019;2020

3. An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations;International Journal of Numerical Methods for Heat & Fluid Flow;2018-10-22

4. Solving a mixture model of two-phase flow with velocity non-equilibrium using WENO wavelet methods;International Journal of Numerical Methods for Heat & Fluid Flow;2018-10-04

5. An adaptive multilevel wavelet framework for scale‐selective WENO reconstruction schemes;International Journal for Numerical Methods in Fluids;2018-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3