PID and compliance control-based anti-sticking of drill rod in underground mining

Author:

Li Dongmin,Zhu Shiming,Xia Shangfei,Zhong Peisi,Fang Jiaqi,Dai Peng

Abstract

Purpose During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR have been developed yet. The purpose of this study is to develop an anti-SDR strategy using proportional-integral-derivative (PID) and compliance control (PIDC). The proposed strategy is compatible with the drilling process currently used in underground coal mines using drill rigs. Therefore, this study aims to contribute to the PIDC strategy for solving SDR. Design/methodology/approach A hydraulic circuit to reduce SDR was built based on a load-independent flow distribution system, a PID controller was designed to control the inlet hydraulic pressure of the rotation motor and a typical compliance control approach was adopted to control the feed force and displacement. Moreover, the weight and optimal combination of the alternative admittance control parameters for the feed cylinder were obtained by adopting the orthogonal experiment approach. Furthermore, a fuzzy admittance control approach was proposed to control the feed displacement. Experiments were conducted to test the effectiveness of the proposed method. Findings The experimental results indicated that the PIDC strategy was appropriate and effective for controlling the rotation motor and feed cylinder; thus, the proposed method significantly reduces the SDR during drilling operations in underground coal mines. Research limitations/implications As the PIDC strategy solves the SDR problem in underground coal mines, it greatly improves the safety of coal mine operation and decreases the power cost. Consequently, it brings the considerable benefits of coal mine production and vast application prospects in other corresponding fields. Actual drilling conditions are difficult to accurately simulate in a laboratory; thus, for future work, drilling experiments can be conducted in actual underground coal mines. Originality/value The PIDC-based anti-SDR strategy proposed in this study satisfactorily controls the rotation motor and feed cylinder and facilitates the feed and rotation movements. Furthermore, the tangible novelty of this study results is that it improves the frequency response of the entire drilling system. The drilling process with PIDC decreased the occurrence of SDR by 50%; therefore, the anti-SDR strategy can significantly improve the safety and efficiency of underground coal mining.

Publisher

Emerald

Reference31 articles.

1. Avoiding stick slip vibrations in drilling through startup trajectory design;Journal of Process Control,2018

2. Rock recognition from MWD data: a comparative study of boosting, neural networks, and fuzzy logic;IEEE Geoscience and Remote Sensing Letters,2010

3. Event-triggered adaptive decentralised control of interconnected nonlinear systems with Bouc-Wen hysteresis input;International Journal of Systems Science,2023

4. Adaptive finite-time command-filtered control for switched nonlinear systems with input quantization and output constraints;Circuits, Systems, and Signal Processing,2023

5. Design of hydraulic system for anti-sticking of high-speed drilling rig in soft coal;Safety in Coal Mines,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3