Effect of Ti on stress corrosion cracking behavior and mechanism of Monel K500 alloy in flowing seawater

Author:

Xi Yuchen,Wang Qinying,Luo Xiaofang,Zhang Xingshou,Liu Tingyao,Zheng Huaibei,Dong Lijin,Wang Jie,Zhang Jin

Abstract

Purpose The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy. Design/methodology/approach Monel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior. Findings The number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing. Originality/value The corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Reference22 articles.

1. Long-term corrosion behavior of materials in the marine atmosphere;ASTM Special Technical Publication,1988

2. The analysis of electrode impedances complicated by the presence of a constant phase element;Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984

3. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys;Corrosion Science,2016

4. Precipitation in the NiCu-base alloy Monel K-500;Materials Science and Engineering,1986

5. Precipitation hardening in Nickel-Copper base alloy Monel K500;Metallurgical Transactions A,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3