Author:
Sun BaoZhuang,Liao Wenju,Li Zhong,Liu Zhiyong,Du Cuiwei
Abstract
Purpose
To study the corrosion behavior of pipeline steel in coastal areas, a tidal seawater macro-cell corrosion device was built using a cycle soaking tank and a macro-cell corrosion facility to simulate the corrosion behavior of pipeline steel in a simulated coastal environment (dry and wet alternations during seawater-soil corrosion macro-cell processes).
Design/methodology/approach
The corrosion behaviors were studied via the weight loss method, electrochemical methods and morphological observations on corrosion.
Findings
The results show that during the initial stage of tidal seawater/soil macro-cell corrosion process of the X65 steel, the working electrode on the seawater side is the anode of the macro-battery. As corrosion progresses, the anode and the cathode of the macro-battery become inverted. As the area ratio and the dry – wet ratio increase, the time of anode and cathode inversion shortens. Galvanic current density decreases as the dry – wet ratio increases and increases as the area ratio increases. The corrosion process of macro-cell is affected by the reversal of anode and cathode. After the reversal of anode and cathode, the corrosion rate is mainly controlled by dry – wet alternating corrosion.
Originality/value
The corrosion behavior of a pipeline steel in a coastal environment was studied using a tidal seawater macro-cell corrosion device. The synergism effect between the tidal seawater and seawater-soil macro-cell on corrosion behavior was clarified.
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献