Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene parts

Author:

Dal Fabbro Pierandrea,La Gala Andrea,Van De Steene Willem,D’hooge Dagmar R.,Lucchetta Giovanni,Cardon Ludwig,Fiorio Rudinei

Abstract

Purpose This study aims to evaluate and compare the macroscopic properties of commercial acrylonitrile-butadiene-styrene (ABS) processed by two different types of additive manufacturing (AM) machines. The focus is also on the effect of multiple closed-loop recycling of ABS. Design/methodology/approach A conventional direct-drive, Cartesian-type machine and a Bowden, Delta-type machine with an infrared radiant heating system are used to manufacture test specimens molded in ABS. Afterward, multiple closed-loop recycling cycles are conducted, involving consecutive AM (four times) and recycling (three times). The rheological, mechanical, morphological and physicochemical properties are investigated. Findings The type of machine affects the quality of the produced parts. The machine containing an infrared radiant system in a temperature-controlled chamber produces parts showing higher mechanical properties and filling fraction, although it increases the yellowing. Closed-loop recycling of ABS for AM is applicable for at least two cycles, inducing a slight increase in tensile modulus (ca. 5%) and in tensile strength (ca. 13%) and a decrease in the impact strength (ca. 14%) and melt viscosity. An increase in the filling fraction of the AM parts promotes an increase in tensile strength and tensile modulus, although it does not influence the impact strength. Furthermore, multiple closed-loop recycling does not affect the overall chemical structure of ABS. Practical implications Controlling the environmental temperature and using infrared radiant heating during AM of ABS improves the quality of the produced parts. Closed-loop recycling of ABS used in AM is feasible up to at least two recycling steps, supporting the implementation of a circular economy for polymer-based AM. Originality/value This study shows original results regarding the assessment of the effect of different types of AM machines on the main end-use properties of ABS parts and the influence of multiple closed-loop recycling on the characteristics of ABS fabricated by the most suited AM machine with an infrared radiant heating system and a temperature-controlled environment.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference39 articles.

1. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy;Polymer Degradation and Stability,2012

2. Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures;Rapid Prototyping Journal,2006

3. On the assessment of thermo-mechanical degradability of multi-recycled ABS polymer for 3D printing applications,2019

4. Utilization of agricultural by-products as fillers and reinforcements in abs;SAE International Journal of Materials and Manufacturing,2010

5. A study on extruded filament bonding in fused filament fabrication;Rapid Prototyping Journal,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3