Influence of copper interlayer on the interface characteristics of stainless steel–aluminium transitional structure in wire arc directed energy deposition

Author:

Paul Amrit Raj,Mukherjee Manidipto,Sahu Mohit Kumar

Abstract

Purpose The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties. Design/methodology/approach The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall. Findings The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface. Originality/value The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference46 articles.

1. Microstructural, mechanical and corrosion properties of aluminium MIG welds reinforced with copper powder;International Journal of Advanced Manufacturing Technology,2019

2. Microstructural development during wire arc additive manufacturing of copper-based components;Welding in the World,2020

3. Molecular dynamics modelling of liquid Fe-C alloys;High Temperature Materials and Processes,2011

4. Density determination of liquid copper, nickel, and their alloys;International Journal of Thermophysics,2003

5. Cubic to hexagonal iron phase transition promoted by interstitial hydrogen,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3