Evaluation of the mechanical properties of polyamide 12 regarding different percentages of reused material in the selective laser sintering process

Author:

da Silva Rafael Couto,Dicati Gabriela Wessling Oening,Gubaua José Eduardo,Radovanovic Eduardo,Favaro Sílvia Luciana

Abstract

Purpose Additive manufacturing (AM) has been one of the most highlighted processes of the last few years. AM prints complex parts and items from 3D files regarding different materials, such as polymers. Moreover, there are different AM techniques available for polymers, such as selective laser sintering. In the SLS technology, polyamides 11 and 12 lead 88% of the market. These materials are high-cost and use an average of 50% of virgin material at each printing. It is possible to use lower rates of virgin material, but at least 30% is recommended. Low rates of virgin material decrease mechanical properties. Design/methodology/approach This study aims to evaluate the influence on the mechanical properties of the percentage of reused PA12 in parts manufactured by the SLS process. The specimens of PA12 were manufactured with a percentage of virgin/reused polymer of 50/50, 40/60, 30/70, 20/80 and 10/90. We considered three distinct printing directions to compare the mechanical properties of the specimens: horizontal, perpendicular and vertical. Findings The results showed that when the percentage of reused material increases, the tensile strength limit (TSL), flexural strength limit and Shore D hardness decrease. Another aspect visualized was the fragile behavior presented in the vertical specimens. In addition, DSC analysis indicated a 2% reduction of crystallinity. Scanning electron microscopy images revealed spherical voids and unfused particles of PA12 at the fracture of tensile test specimens. The material thermal history and unfused particles could decrease the material properties. Originality/value We observed that the mechanical properties, such as the TSL, flexural strength limit and hardness, decrease as the percentage of reused material increases. In addition, the process presented a printing-direction dependence, where the vertical direction presented as the more brittle between the ones used.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. Dependence of mechanical properties of polyamide components on build parameters in the SLS process;Journal of Materials Processing Technology,2007

2. Systematical mechanism of polyamide-12 aging and its micro structural evolution during laser sintering;Polymer Testing,2018

3. Effect of temperature on the fracture behavior of polyamide 12 and glass-filled polyamide 12 processed by selective laser sintering;Engineering Fracture Mechanics,2018

4. Effect of pa12 powder reuse on coalescence behaviour and microstructure of SLS parts;European Polymer Journal,2017

5. Mechanical characterization of 3d-printed polymers;Additive Manufacturing,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3