Energy absorbing capability of additive manufactured multi-material honeycomb structure

Author:

Rajendra Boopathy Vijayanand,Sriraman Anantharaman,G. Arumaikkannu

Abstract

Purpose The present work aims in presenting the energy absorbing capability of different combination stacking of multiple materials, namely, Vero White and Tango Plus, under static and dynamic loading conditions. Design/methodology/approach Honeycomb structures with various multi-material stackings are fabricated using PolyJet 3D printing technique. From the static and dynamic test results, the structure having the better energy absorbing capability is identified. Findings It is found that from the various stacking combinations of multiple materials, the five-layered (5L) sandwich multi-material honeycomb structure has better energy absorbing capability. Practical implications This multi-material combination with a honeycomb structure can be used in the application of crash resistance components such as helmet, knee guard, car bumper, etc. Originality/value Through experimental work, various multi-material honeycomb structures and impact resistance of single material clearly indicated the inability to absorb impact loads which experiences a maximum force of 5,055.24 N, whereas the 5L sandwich multi-material honeycomb structure experiences a minimum force of 1,948.17 N, which is 38.5 per cent of the force experienced by the single material. Moreover, in the case of compressive resistance, 2L sandwich multi-material honeycomb structure experiences a maximum force of 5,887.5 N, whereas 5L sandwich multi-material honeycomb structure experiences a minimum force of 2,410 N, which is 40.9 per cent of the force experienced by two-layered (2L) sandwich multi-material honeycomb structure. In this study, the multi-material absorbed most of the input energy and experienced minimum force in both compressive and impact loads, thus showing its energy absorbing capability and hence its utility for structures that experience impact and compressive loads. A maximum force is required to deform the single and 2L material in terms of impact and compressive load, respectively, under maximum stiffness conditions.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

1. Simulation of vehicular frontal crash test;International Journal of Applied Research in Mechanical Engineering (IJARME),2012

2. Standard terminology for additive manufacturing coordinate systems and test methodologies;American Society for Testing and Materials, Standard F2921-11,2012

3. ASTM F2792-10 standard terminology for additive manufacturing technologies;ASTM,2018

4. Static and dynamic properties of high-density metal honeycombs;International Journal of Impact Engineering ISSN: PII: S0734-743X(97)00040-7,1998

5. Design and manufacturing issues in the development of light weight solution for a vehicle frontal bumper;Procedia Engineering,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3