The effect of printing parameters on the mechanical properties of fiber-reinforced PA6 matrix composites in material extrusion-based additive manufacturing

Author:

Dogru Alperen,Seydibeyoglu M. Ozgur

Abstract

Purpose This study aims to understand the effect of the use of different proportions and types of fibers in the polyamide 6 (PA6) matrix during material extrusion-based additive manufacturing (MEX) and the effect of the manufacturing parameters on the mechanical properties. The mechanical, thermal and morphological properties of PA composites that are reinforced with carbon fiber (CF), glass fiber (GF) and as well as hybrid fiber (HF) were investigated. Design/methodology/approach In this study, the effect of nozzle temperature and layer thickness on the mechanical properties of composite samples was investigated in terms of their behavior under tensile, impact and compression loads, manufacturing parameters as well as fiber ratio and type. The results were also consolidated by scanning electron microscopy. Findings At 20 Wt.% CF reinforcement PA6 samples, a tensile strength value of 125 MPa was obtained with a 60% increase in tensile strength value compared to neatPA6. The HF-reinforced ones also measured a tensile strength value of 106.69 MPa. This corresponds to an increase of 38% compared to neatPA6. The results also show that HF reinforcement can be an important component for many composites and a suitable material for use under compression loading. Originality/value PA6, an engineering polymer, can be produced by MEX, which offers several advantages for complex geometries and customized designs. There are studies on different carbon and GF ratios in the PA6 matrix. Using these fibers together in a HF, the examination of their mechanical properties in the MEX method and the examination of the effect of GF reinforcement in the hybrid structure, which has a cost-reducing effect, has been an innovative approach. In this study, the results of the optimization of the parameters affecting the mechanical properties in the production of samples reinforced with different ratios and types of fibers in the PA6 matrix by the MEX method are presented.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3