Mapping the structural properties of zinc scaffold fabricated via rapid tooling for bone tissue engineering applications

Author:

Kansal Abhishek,Dvivedi Akshay,Kumar Pradeep

Abstract

Purpose The purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were assessed in relation to their structural properties. The prospects of fused deposition modeling (FDM) for printing metal scaffolds via rapid tooling have also been studied. Design/methodology/approach Zn scaffolds with different pore and strut sizes were manufactured via the rapid tooling method. This method is a multistep process that begins with the 3D printing of a polymer template. Later, a paraffin template was obtained from the prepared polymer template. Finally, this paraffin template was used to fabricate the Zn scaffold using microwave sintering. The characterization of prepared Zn samples involved structural characterization, microstructural study, surface roughness testing and compression testing. Moreover, based on the Gibson–Ashby model analysis, the model equations’ constant values were evaluated, which can help in predicting the mechanical properties of Zn scaffolds. Findings The scanning electron microscopy study confirmed that the fabricated sample pores were open and interconnected. The X-ray diffraction analysis revealed that the Zn scaffold contained hexagonal closed-packed Zn peaks related to the a-Zn phase, validating that scaffolds were free from contamination and impurity. The range for ultimate compressive strength, compressive modulus and plateau stresses for Zn samples were found to be 6.75–39 MPa, 0.14–3.51 GPa and 1.85–12.6 MPa by adjusting their porosity, which are comparable with the cancellous bones. The average roughness value for the Zn scaffolds was found to be 1.86 µm. Originality/value This research work can widen the scope for extrusion-based FDM printers for fabricating biocompatible and biodegradable metal Zn scaffolds. This study also revealed the effects of scaffold structural properties like porosity, pore and strut size effect on their mechanical characteristics in view of tissue engineering applications.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3