Smart home devices and B2C e-commerce: a way to reduce failed deliveries

Author:

Seghezzi AriannaORCID,Mangiaracina Riccardo

Abstract

PurposeFailed deliveries (i.e. deliveries not accomplished due to the absence of customers) represent a critical issue in B2C (Business-to-consumer) e-commerce last-mile deliveries, implying high costs for e-commerce players and negatively affecting customer satisfaction. A promising option to reduce them would be scheduling deliveries based on the probability to find customers at home. This work proposes a solution based on presence data (gathered through Internet of Things [IoT] devices) to organise the delivery tours, which aims to both minimise the travelled distance and maximise the probability to find customers at home.Design/methodology/approachThe adopted methodology is a multi-method approach, based on interviews with practitioners. A model is developed and applied to Milan (Italy) to compare the performance of the proposed innovative solution with traditional home deliveries (both in terms of cost and delivery success rate).FindingsThe proposed solution implies a significant reduction of missed deliveries if compared to the traditional operating mode. Accordingly, even if allocating the customers to time windows based on their availability profiles (APs) entails an increase in the total travel time, the average delivery cost per parcel decreases.Originality/valueOn the academic side, this work proposes and evaluates an innovative last-mile delivery (LMD) solution that exploits new AI (Artificial Intelligence)-based technological trends. On the managerial side, it proposes an efficient and effective novel option for scheduling last-mile deliveries based on the use of smart home devices, which has a significant impact in reducing costs and increasing the service level.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference31 articles.

1. An overview of security and privacy in smart cities' IoT communications;Transactions on Emerging Telecommunications Technologies,2022

2. Simulation of B2C e-commerce distribution in Antwerp using cargo bikes and delivery points;European Transport Research Review,2018

3. Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints;European Journal of Operational Research,2012

4. E-commerce and prevalence of last mile practices;Transportation Research Procedia,2020

5. The last mile challenge: evaluating the effects of customer density and delivery window patterns;Journal of Business Logistics,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3