Research on power-law distribution of long-tail data and its application to tourism recommendation

Author:

Chen Xiang,Pan Yaohui,Luo Bin

Abstract

PurposeOne challenge for tourism recommendation systems (TRSs) is the long-tail phenomenon of ratings or popularity among tourist products. This paper aims to improve the diversity and efficiency of TRSs utilizing the power-law distribution of long-tail data.Design/methodology/approachUsing Sina Weibo check-in data for example, this paper demonstrates that the long-tail phenomenon exists in user travel behaviors and fits the long-tail travel data with power-law distribution. To solve data sparsity in the long-tail part and increase recommendation diversity of TRSs, the paper proposes a collaborative filtering (CF) recommendation algorithm combining with power-law distribution. Furthermore, by combining power-law distribution with locality sensitive hashing (LSH), the paper optimizes user similarity calculation to improve the calculation efficiency of TRSs.FindingsThe comparison experiments show that the proposed algorithm greatly improves the recommendation diversity and calculation efficiency while maintaining high precision and recall of recommendation, providing basis for further dynamic recommendation.Originality/valueTRSs provide a better solution to the problem of information overload in the tourism field. However, based on the historical travel data over the whole population, most current TRSs tend to recommend hot and similar spots to users, lacking in diversity and failing to provide personalized recommendations. Meanwhile, the large high-dimensional sparse data in online social networks (OSNs) brings huge computational cost when calculating user similarity with traditional CF algorithms. In this paper, by integrating the power-law distribution of travel data and tourism recommendation technology, the authors’ work solves the problem existing in traditional TRSs that recommendation results are overly narrow and lack in serendipity, and provides users with a wider range of choices and hence improves user experience in TRSs. Meanwhile, utilizing locality sensitive hash functions, the authors’ work hashes users from high-dimensional vectors to one-dimensional integers and maps similar users into the same buckets, which realizes fast nearest neighbors search in high-dimensional space and solves the extreme sparsity problem of high dimensional travel data. Furthermore, applying the hashing results to user similarity calculation, the paper greatly reduces computational complexity and improves calculation efficiency of TRSs, which reduces the system load and enables TRSs to provide effective and timely recommendations for users.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference48 articles.

1. Popularity and novelty dynamics in evolving networks;Scientific Reports,2018

2. Beyond rating prediction accuracy: on new perspectives in recommender systems,2013

3. Adamopoulos, P. and Tuzhilin, A. (2011), “On unexpectedness in recommender systems: or how to expect the unexpected”, Workshop on Novelty and Diversity in Recommender System, pp. 11-18.

4. On unexpectedness in recommender systems: or how to better expect the unexpected;ACM Transactions on Intelligent Systems and Technology,2014

5. Diameter of the world-wide web;Nature,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3