Author:
Chen Xiang,Pan Yaohui,Luo Bin
Abstract
PurposeOne challenge for tourism recommendation systems (TRSs) is the long-tail phenomenon of ratings or popularity among tourist products. This paper aims to improve the diversity and efficiency of TRSs utilizing the power-law distribution of long-tail data.Design/methodology/approachUsing Sina Weibo check-in data for example, this paper demonstrates that the long-tail phenomenon exists in user travel behaviors and fits the long-tail travel data with power-law distribution. To solve data sparsity in the long-tail part and increase recommendation diversity of TRSs, the paper proposes a collaborative filtering (CF) recommendation algorithm combining with power-law distribution. Furthermore, by combining power-law distribution with locality sensitive hashing (LSH), the paper optimizes user similarity calculation to improve the calculation efficiency of TRSs.FindingsThe comparison experiments show that the proposed algorithm greatly improves the recommendation diversity and calculation efficiency while maintaining high precision and recall of recommendation, providing basis for further dynamic recommendation.Originality/valueTRSs provide a better solution to the problem of information overload in the tourism field. However, based on the historical travel data over the whole population, most current TRSs tend to recommend hot and similar spots to users, lacking in diversity and failing to provide personalized recommendations. Meanwhile, the large high-dimensional sparse data in online social networks (OSNs) brings huge computational cost when calculating user similarity with traditional CF algorithms. In this paper, by integrating the power-law distribution of travel data and tourism recommendation technology, the authors’ work solves the problem existing in traditional TRSs that recommendation results are overly narrow and lack in serendipity, and provides users with a wider range of choices and hence improves user experience in TRSs. Meanwhile, utilizing locality sensitive hash functions, the authors’ work hashes users from high-dimensional vectors to one-dimensional integers and maps similar users into the same buckets, which realizes fast nearest neighbors search in high-dimensional space and solves the extreme sparsity problem of high dimensional travel data. Furthermore, applying the hashing results to user similarity calculation, the paper greatly reduces computational complexity and improves calculation efficiency of TRSs, which reduces the system load and enables TRSs to provide effective and timely recommendations for users.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems
Reference48 articles.
1. Popularity and novelty dynamics in evolving networks;Scientific Reports,2018
2. Beyond rating prediction accuracy: on new perspectives in recommender systems,2013
3. Adamopoulos, P. and Tuzhilin, A. (2011), “On unexpectedness in recommender systems: or how to expect the unexpected”, Workshop on Novelty and Diversity in Recommender System, pp. 11-18.
4. On unexpectedness in recommender systems: or how to better expect the unexpected;ACM Transactions on Intelligent Systems and Technology,2014
5. Diameter of the world-wide web;Nature,1999
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献