Employee attrition prediction in a pharmaceutical company using both machine learning approach and qualitative data

Author:

Mozaffari Fatemeh,Rahimi Marzieh,Yazdani HamidrezaORCID,Sohrabi BabakORCID

Abstract

PurposeThis research intends to develop a model for predicting employees at a high-risk attrition and identify the most important factors affecting them.Design/methodology/approachIn this study, using the triangulation technique of a mixed research method, the employee attrition problem is investigated by identifying its affecting factors. For that matter, data related to the human resources department of a pharmaceutical company in Iran are used. And to achieve the intended goal, advanced data mining algorithms and interviews with human resource managers are applied.FindingsA model for predicting employees at a high-risk attrition is presented based on the gradient boosting machine algorithm with 89% accuracy. The use of the mixed research approach shows that qualitative and quantitative methods can be more effective in identifying the factors affecting employee churn or loss of staff. The results also contain a new situation arising out of the COVID-19 pandemic and remote working scenarios having impact on employee attrition. Finally, human resource policies are presented based on variables related to each of the identified factors.Originality/valueThe novel contributions of this study include real data related to a leading pharmaceutical company as well as a combination of two quantitative and qualitative methods. The hybrid approach can identify the reasons for attrition and, consequently, retention policies to benefit from the advantage of both approaches. Data mining can be useful to identify the factors, which are usually not mentioned in termination interviews, such as direct managers. On the other hand, the results obtained from termination interviews can also include features that the authors cannot identify through data mining, which are specifically related to the characteristics of the pharmaceutical industry such as building a more professional career path. From a practical perspective, since this company specializes in pharmaceutical marketing in a new way and is primarily comprised graduates, it is important to note that the churn of specialized people disperses organizational and technological know-how. On the other hand, the pharmacist community in Iran is small, and their attrition might adversely affect not only the reputation of an organization but the employer's brand as well. So, this research would help other similar firms in retaining their valuable human capital.

Publisher

Emerald

Subject

Business and International Management,Strategy and Management

Reference80 articles.

1. User's guide to correlation coefficients;Turkish Journal of Emergency Medicine,2018

2. Predicting employee attrition using machine learning,2018

3. Customer churn prediction in telecommunication industry using data certainty;Journal of Business Research,2019

4. Mixed method research design: a preferable approach in management studies,2008

5. Predictive data mining in clinical medicine: current issues and guidelines;International Journal of Medical Informatics,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A decade of research on machine learning techniques for predicting employee turnover: A systematic literature review;Expert Systems with Applications;2024-03

2. Predicting Employee Attrition Using Machine Learning: A Systematic Literature Review;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

3. Smart HRM 4.0 practices for organizational performance: the role of dynamic capabilities;Benchmarking: An International Journal;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3