A flexible mathematical model for crew pairing optimization to generate n-day pairings considering the risk of COVID-19: a real case study

Author:

Shafipour-Omrani BaharehORCID,Rashidi Komijan AlirezaORCID,Sadjadi Seyed Jafar,Khalili-Damghani KavehORCID,Ghezavati VahidrezaORCID

Abstract

PurposeOne of the main advantages of the proposed model is that it is flexible to generate n-day pairings simultaneously. It means that, despite previous researches, one-day to n-day pairings can be generated in a single model. The flexibility in generating parings causes that the proposed model leads to better solutions compared to existing models. Another advantage of the model is minimizing the risk of COVID-19 by limitation of daily flights as well as elapsed time minimization. As airports are among high risk places in COVID-19 pandemic, minimization of infection risk is considered in this model for the first time. Genetic algorithm is used as the solution approach, and its efficiency is compared to GAMS in small and medium-size problems.Design/methodology/approachOne of the most complex issues in airlines is crew scheduling problem which is divided into two subproblems: crew pairing problem (CPP) and crew rostering problem (CRP). Generating crew pairings is a tremendous and exhausting task as millions of pairings may be generated for an airline. Moreover, crew cost has the largest share in total cost of airlines after fuel cost. As a result, crew scheduling with the aim of cost minimization is one of the most important issues in airlines. In this paper, a new bi-objective mixed integer programming model is proposed to generate pairings in such a way that deadhead cost, crew cost and the risk of COVID-19 are minimized.FindingsThe proposed model is applied for domestic flights of Iran Air airline. The results of the study indicate that genetic algorithm solutions have only 0.414 and 0.380 gap on average to optimum values of the first and the second objective functions, respectively. Due to the flexibility of the proposed model, it improves solutions resulted from existing models with fixed-duty pairings. Crew cost is decreased by 12.82, 24.72, 4.05 and 14.86% compared to one-duty to four-duty models. In detail, crew salary is improved by 12.85, 24.64, 4.07 and 14.91% and deadhead cost is decreased by 11.87, 26.98, 3.27, and 13.35% compared to one-duty to four-duty models, respectively.Originality/valueThe authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference61 articles.

1. On large-scale airline crew pairing generation,2018

2. On learning combinatorial patterns to assist large-scale airline crew pairing optimization,2020

3. A variable neighborhood search approach for the crew pairing problem;Electronic Notes in Discrete Mathematics,2017

4. An integer programming approach to generating airline crew pairings;Computers and Operations Research,2009

5. A robust pairing model for airline crew scheduling;Transportation Science,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3