UCAN: U-shaped context aggregation network for thin crack segmentation under topological constraints

Author:

Chen Jie,Zhu Guanming,Zhang Yindong,Chen Zhuangzhuang,Huang Qiang,Li Jianqiang

Abstract

Purpose Thin cracks on the surface, such as those found in nuclear power plant concrete structures, are difficult to identify because they tend to be thin. This paper aims to design a novel segmentation network, called U-shaped contextual aggregation network (UCAN), for better recognition of weak cracks. Design/methodology/approach UCAN uses dilated convolutional layers with exponentially changing dilation rates to extract additional contextual features of thin cracks while preserving resolution. Furthermore, this paper has developed a topology-based loss function, called ℓcl Dice, which enhances the crack segmentation’s connectivity. Findings This paper generated five data sets with varying crack widths to evaluate the performance of multiple algorithms. The results show that the UCAN network proposed in this study achieves the highest F1-Score on thinner cracks. Additionally, training the UCAN network with the ℓcl Dice improves the F1-Scores compared to using the cross-entropy function alone. These findings demonstrate the effectiveness of the UCAN network and the value of incorporating the ℓcl Dice in crack segmentation tasks. Originality/value In this paper, an exponentially dilated convolutional layer is constructed to replace the commonly used pooling layer to improve the model receptive field. To address the challenge of preserving fracture connectivity segmentation, this paper introduces ℓcl Dice. This design enables UCAN to extract more contextual features while maintaining resolution, thus improving the crack segmentation performance. The proposed method is evaluated using extensive experiments where the results demonstrate the effectiveness of the algorithm.

Publisher

Emerald

Reference41 articles.

1. Automatic road defect detection by textural pattern recognition based on AdaBoost;Computer-Aided Civil and Infrastructure Engineering,2012

2. SegNet: a deep convolutional encoder-decoder architecture for image segmentation;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

3. A computational approach to edge detection;IEEE Transactions on Pattern Analysis and Machine Intelligence,1986

4. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs;IEEE Transactions on Pattern Analysis and Machine Intelligence,2018

5. Geometry-aware guided loss for deep crack recognition,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3