Terrestrial ecosystem loss and biosphere collapse

Author:

Barry Glen

Abstract

Purpose – The purpose of this paper is to propose a measurable terrestrial ecosystem boundary to answer the question: what extent of landscapes, bioregions, continents, and the global Earth System must remain as connected and intact core ecological areas and agro-ecological buffers to sustain local and regional ecosystem services as well as the biosphere commons? Design/methodology/approach – This observational study reviews planetary boundary, biosphere, climate, ecosystems, and ecological tipping point science. It presents a refinement to planetary boundary science to include a measurable terrestrial ecosystem boundary based on landscape ecology and percolation theory. The paper concludes with discussion of the urgency posed by ecosystem collapse. Findings – A new planetary boundary threshold is proposed based on ecology's percolation theory: that across scales 60 percent of terrestrial ecosystems must remain, setting the boundary at 66 percent as a precaution, to maintain key biogeochemical processes that sustain the biosphere and for ecosystems to remain the context for human endeavors. Strict protection is proposed for 44 percent of global land, 22 percent as agro-ecological buffers, and 33 percent as zones of sustainable human use. Research limitations/implications – It is not possible to carry out controlled experiments on Earth's one biosphere, removing landscape connectivity to see long-term effects results upon ecological well-being. Practical implications – Spatially explicit goals for the amount and connectivity of natural and agro-ecological ecosystems to maintain ecological connectivity across scales may help in planning land use, including protection and placement of ecological restoration activities. Originality/value – This paper proposes the first measureable and spatially explicit terrestrial ecosystem loss threshold as part of planetary boundary science.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3