Aero-heating modelling on the ablative noses during flight trajectory

Author:

Doustdar Mohamad Mehdi,Mardani Morteza,Ghadak Farhad

Abstract

Purpose The purpose of this paper is to present the more accurate estimation of aero-heating for the ablative 3-D noses by using the viscous shock layers and similarity of viscous boundary layer methods. Design/methodology/approach The combination of viscous shock layer, similarity of viscous boundary layer (SVBL) methods, Park ablation and Baldwin–Lomax turbulent models is presented in this paper. The proposed method reduces computational memory and run time as compared to the time marching algorithms during flight trajectory. Therefore, the space marching algorithm and finite difference method is used, and the governing equations are transferred into curvature coordinate by using the mapping terms. Findings The solving for an ogive nose during flight trajectory shows that the convergence of this technique is fast as compared to the user defined function based on the fluent solvers, program to axisymmetric regular geometry code and other research. The results of this research are validated by the mentioned research studies. The relative error for the aero-heating, species concentration of the shock layer gas mixture because of dissociation/ionization of air and surface ablation results is less than 6, 5 and 11 per cent, respectively. Research limitations/implications The required time for an aerodynamic design of hypersonic noses reduces as the induced aero-heating is one of the principal design parameters in standpoint aerodynamic, structural and other terms. The magnitude of this parameter, surface temperature and surface recess because of ablation should be corrected during flight trajectory. Social implications The results of this research are applicable for aerospace industries. Originality/value The originality of this paper is 90 per cent.

Publisher

Emerald

Subject

Aerospace Engineering

Reference23 articles.

1. Modelling hypersonic entry with the fully-implicit Navier–Stokes (FIN-S) stabilized finite element flow solver;Computers & Fluids,2014

2. An approximate axisymmetric viscous shock layer aero-heating method for three-dimensional bodies,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3