FDM 3D printing method utility assessment in small RC aircraft design

Author:

Skawiński Igor,Goetzendorf-Grabowski Tomasz

Abstract

Purpose The purpose of this paper is to investigate the possibility of manufacturing fused deposition modelling (FDM) 3D printed structures such as wings or fuselages for small remote control (RC) air craft and mini unmaned aerial vehicles (UAVs). Design/methodology/approach Material tests, design assumptions and calculations were verified by designing and manufacturing a small radio-controlled motor-glider using as many printed parts as possible and performing test flights. Findings It is possible to create an aircraft with good flight characteristics using FDM 3D printed parts. Current level of technology allows for reasonably fast manufacturing of 3D printed aircraft with good reliability and high success ratio of prints; however, only some of the materials are suitable for printing thin wall structures such as wings. Practical implications The paper proves that apart from currently popular small RC aircraft structural materials such as composites, wood and foam, there is also printed plastic. Moreover, 3D printing is highly competitive in some aspects such as first unit production time or production cost. Originality/value The presented manufacturing technique can be useful for quick and cost-effective creating scale prototypes of the aircraft for performing test flights.

Publisher

Emerald

Subject

Aerospace Engineering

Reference12 articles.

1. 3Dlab Print (2015), available at: https://3dlabprint.com (accessed 6 July 2018).

2. Banke, J. (2018), “3D printing offers multi-dimensional benefits to aviation”, available at: www.nasa.gov/aero/3D-printing-offers-multi-dimensional-benefits-to-aviation (accessed 30 September 2018).

3. XFOIL: an analysis and design system for low Reynolds number airfoils,1989

4. A comparison between 3D printing and milling process for a spar cap fitting (Wing-fuselage) of UAV aircraft;Procedia CIRP,2017

5. Multi-disciplinary optimization in aeronautical engineering;Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2017

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3