Abstract
Purpose
The purpose of this paper is to develop a novel active disturbance rejection attitude controller for quadrotors and propose a controller parameters identification approach to obtain better control results.
Design/methodology/approach
Aiming at the problem that quadrotor is susceptible to disturbance in outdoor flight, the improved active disturbance rejection control (IADRC) is applied to design attitude controller. To overcome the difficulty that adjusting the parameters of IADRC controller manually is complex, paired coevolution pigeon-inspired optimization (PCPIO) algorithm is used to optimize the control parameters.
Findings
The IADRC, where nonlinear state error feedback control law is replaced by non-singular fast terminal sliding mode control law and a third-order tracking differentiator is designed for second derivative of the state, has higher control accuracy and better robustness than ADRC. The improved PIO algorithm based on evolutionary mechanism, named PCPIO, is proposed. The optimal parameters of ADRC controller are found by PCPIO with the optimization criterion of integral of time-weighted absolute value of the error. The effectiveness of the proposed method is verified by a series of simulation experiments.
Practical implications
IADRC can improve the accuracy of attitude control of quadrotor and resist external interference more effectively. The proposed PCPIO algorithm can be easily applied to practice and can help the design of the quadrotor control system.
Originality/value
An improved active disturbance rejection controller is designed for quadrotor attitude control, and a hybrid model of PIO and evolution mechanism is proposed for parameters identification of the controller.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献