Active disturbance rejection attitude control of unmanned quadrotor via paired coevolution pigeon-inspired optimization

Author:

Yuan Yang,Duan Haibin

Abstract

Purpose The purpose of this paper is to develop a novel active disturbance rejection attitude controller for quadrotors and propose a controller parameters identification approach to obtain better control results. Design/methodology/approach Aiming at the problem that quadrotor is susceptible to disturbance in outdoor flight, the improved active disturbance rejection control (IADRC) is applied to design attitude controller. To overcome the difficulty that adjusting the parameters of IADRC controller manually is complex, paired coevolution pigeon-inspired optimization (PCPIO) algorithm is used to optimize the control parameters. Findings The IADRC, where nonlinear state error feedback control law is replaced by non-singular fast terminal sliding mode control law and a third-order tracking differentiator is designed for second derivative of the state, has higher control accuracy and better robustness than ADRC. The improved PIO algorithm based on evolutionary mechanism, named PCPIO, is proposed. The optimal parameters of ADRC controller are found by PCPIO with the optimization criterion of integral of time-weighted absolute value of the error. The effectiveness of the proposed method is verified by a series of simulation experiments. Practical implications IADRC can improve the accuracy of attitude control of quadrotor and resist external interference more effectively. The proposed PCPIO algorithm can be easily applied to practice and can help the design of the quadrotor control system. Originality/value An improved active disturbance rejection controller is designed for quadrotor attitude control, and a hybrid model of PIO and evolution mechanism is proposed for parameters identification of the controller.

Publisher

Emerald

Subject

Aerospace Engineering

Reference35 articles.

1. A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer;Expert Systems with Applications,2020

2. ITAE optimal sliding modes for third-order systems with input signal and state constraints;IEEE Transactions on Automatic Control,2010

3. Control parameter design for automatic carrier landing system via pigeon-inspired optimization;Nonlinear Dynamics,2016

4. Predator-prey pigeon-inspired optimization for UAV ALS longitudinal parameters tuning;IEEE Transactions on Aerospace and Electronic Systems,2019

5. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning;International Journal of Intelligent Computing and Cybernetics,2014

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3