Abstract
PurposeThis research aims to monitor vegetation indices to assess drought in paddy rice fields in Mazandaran, Iran, and propose the best index to predict rice yield.Design/methodology/approachA three-step methodology is applied. First, the paddy rice fields are mapped by using three satellite-based datasets, namely SRTM DEM, Landsat8 TOA and MYD11A2. Second, the maps of indices are extracted using MODIS. And finally, the trend of indices over rice-growing seasons is extracted and compared with the rice yield data.FindingsRice paddies maps and vegetation indices maps are provided. Vegetation Health Index (VHI) combining average Temperature Condition Index (TCI) and minimum Vegetation Condition Index (VCI), and also VHI combining TCImin and VCImin are found to be the most proper indices to predict rice yield.Practical implicationsThe results serve as a guideline for policy-makers and practitioners in the agro-food industry to (1) support sustainable agriculture and food safety in terms of rice production; (2) help balance the supply and demand sides of the rice market and move towards SDG2; (3) use yield prediction in the rice supply chain management, pricing and trade flows management; and (4) assess drought risk in index-based insurances.Originality/valueThis study, as one of the first research assessing and mapping vegetation indices for rice paddies in northern Iran, particularly contributes to (1) extracting the map of paddy rice fields in Mazandaran Province by using satellite-based data on cloud-computing technology in the Google Earth Engine platform; (2) providing the map of VCI and TCI for the period 2010–2019 based on MODIS data and (3) specifying the best index to describe rice yield through proposing different calculation methods for VHI.
Subject
Food Science,Business, Management and Accounting (miscellaneous)
Reference61 articles.
1. Paddy farmers’ pro-environmental behavior based on virtue-ethical perspective;Agricultural Research,2021
2. Assessment of land suitability and agricultural production sustainability using a combined approach (Fuzzy-AHP-GIS): a case study of Mazandaran province, Iran;Information Processing in Agriculture,2020
3. Sustainability assessment of rice production systems in Mazandaran Province, Iran with emergy analysis and fuzzy logic;Sustainable Energy Technologies and Assessments,2020
4. Major challenges to achieving food security in rural, Iran;Rural Society,2021
5. Automatic paddy rice mapping interface using arcengine and Landsat 8 imagery (case study in north part of Iran);The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2014
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献