Author:
Gao Lilan,Gao Hong,Chen Xu
Abstract
Purpose
– This review paper aims to provide a better understanding of formulation and processing of anisotropic conductive adhesive film (ACF) material and to summarize the significant research and development work for the mechanical properties of ACF material and joints, which helps to the development and application of ACF joints with better reliability in microelectronic packaging systems.
Design/methodology/approach
– The ACF material was cured at high temperature of 190°C, and the cured ACF was tested by conducting the tensile experiments with uniaxial and cyclic loads. The ACF joint was obtained with process of pre-bonding and final bonding. The impact tests and shear tests of ACF joints were completed with different aging conditions such as high temperature, thermal cycling and hygrothermal aging.
Findings
– The cured ACF exhibited unique time-, temperature- and loading rate-dependent behaviors and a strong memory of loading history. Prior stress cycling with higher mean stress or stress amplitude restrained the ratcheting strain in subsequent cycling with lower mean stress or stress amplitude. The impact strength and adhesive strength of ACF joints increased with increase of bonding temperature, but they decreased with increase of environment temperature. The adhesive strength and life of ACF joints decreased with hygrothermal aging, whereas increased firstly and then decreased with thermal cycling.
Originality/value
– This study is to review the recent investigations on the mechanical properties of ACF material and joints in microelectronic packaging applications.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献