Analysis on corrosion of aluminum-based micro-arc oxidation coating

Author:

Yang Yuanhang,Feng Gang,Gu Yanhong,Zhao Jie,Liang Jian

Abstract

Purpose Aluminum alloy is susceptible to chloride ion attack in sea water, resulting in pitting damage and hence serious security risks for the related applications. To improve the corrosion resistance of Al alloy, micro-arc oxidation (MAO) technology has been developed to produce a protective dense oxide layer on top of Al alloy. However, the mechanism of MAO-induced corrosion resistance is still not fully understood, particularly on local corrosion issue. This paper aims to focus on comprehensively studying the corrosion-resistance mechanism by a series of technologies. Design/methodology/approach The corrosion behavior of samples was studied by open circuit potential (OCP), potentiodynamic polarization (PDP), electrode impedance spectroscopy (EIS) and localized electrode impedance spectroscopy (LEIS) tests in NaCl solution. Findings The MAO-coated Al alloy shows a more positive corrosion potential and a higher corrosion current density compared to the untreated counterpart, indicating a significantly enhanced corrosion-resistance. The study of surface morphology and structure also suggest significantly enhanced corrosion-resistance due to the MAO treatment. Originality/value Based on the results, a new corrosion model was proposed to describe the influence of MAO treatment on the corrosion process and corrosion mechanism of Al alloy, providing insights on the design of the corrosion-resistance coating for metallic alloys in marine applications.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3