Boosting visual servoing performance through RGB-based methods

Author:

Fei Haolin,Wang Ziwei,Tedeschi Stefano,Kennedy Andrew

Abstract

Purpose This paper aims to evaluate and compare the performance of different computer vision algorithms in the context of visual servoing for augmented robot perception and autonomy. Design/methodology/approach The authors evaluated and compared three different approaches: a feature-based approach, a hybrid approach and a machine-learning-based approach. To evaluate the performance of the approaches, experiments were conducted in a simulated environment using the PyBullet physics simulator. The experiments included different levels of complexity, including different numbers of distractors, varying lighting conditions and highly varied object geometry. Findings The experimental results showed that the machine-learning-based approach outperformed the other two approaches in terms of accuracy and robustness. The approach could detect and locate objects in complex scenes with high accuracy, even in the presence of distractors and varying lighting conditions. The hybrid approach showed promising results but was less robust to changes in lighting and object appearance. The feature-based approach performed well in simple scenes but struggled in more complex ones. Originality/value This paper sheds light on the superiority of a hybrid algorithm that incorporates a deep neural network in a feature detector for image-based visual servoing, which demonstrates stronger robustness in object detection and location against distractors and lighting conditions.

Publisher

Emerald

Reference37 articles.

1. Deep reinforcement learning-based control framework for multilateral telesurgery;IEEE Transactions on Medical Robotics and Bionics,2022

2. Automation meets logistics at the promat show and demonstrates faster packing and order filling;Assembly Automation,2011

3. Human-robot perception in industrial environments: a survey;Sensors,2021

4. Virtual-joint based motion similarity criteria for human–robot kinematics mapping;Robotics and Autonomous Systems,2020

5. Encoder-decoder with atrous separable convolution for semantic image segmentation,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3