Characteristics of stacked multi-slot ring resonator sensors

Author:

Amemiya Yoshiteru,Yokoyama Shin

Abstract

Purpose This paper aims to develop ring resonator type optical sensors for high-sensitive detection of biomaterials and a solution concentration surrounding sensor devices. The sensing characteristics of a proposed device are investigated. Design/methodology/approach The proposed device structure is multi-slot ring resonator where the horizontal slots are arranged in vertical direction called as stacked multi-slot ring resonator. The ring resonator consists of silicon nitride because of several advantages such as easy integration of Si photo-detectors. A high sensitivity is expected in this structure because the slot height is precisely controlled by the thickness of stacked silicon nitride and etched silicon oxide layers. Sensing characteristics are evaluated from the simulated effective refractive index using the finite element method and sucrose solution sensing is confirmed using polydimethylsiloxane fluid channel. Findings In the simulation for the solution concentration sensor, the detection sensitivity is enhanced with increasing the slot height and the number of slots. On the other hand, for the biomaterial sensor such as the adsorbed antigen-antibody reaction, the sensitivity increases with decreasing the slot height. In this case, more than four times higher sensitivity is expected compared with the slot ring resonator sensor with vertical single slot and 0.1-0.2 μm slot width. Originality/value This paper presents an improved new structure of ring resonator type sensors and its optimum design parameters. The sensing characteristics are evaluated, and, for the biomaterial sensor, the sensitivity is high in comparison to the previous slot ring resonator.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3