Multiaxial fatigue life prediction for metallic materials considering loading path and additional hardening effect

Author:

Ma Muzhou,Liu XintianORCID

Abstract

PurposeA large number of data have proved that under the same von Mises equivalent strain condition, the fatigue life under multiaxial non-proportional loading is often much lower than the life under multiaxial proportional loading. This is mainly due to the influence of the non-proportional loading path and the additional hardening effect, which lead to a sharp decrease in life.Design/methodology/approachThe modulus attenuation effect is used to modify the static hardening coefficient, and the predicted value obtained is closer to the additional hardening coefficient obtained from the experiment. A fatigue life model can consider non-proportional paths, and additional hardening effects are proposed. And the model uses multiaxial fatigue test data to verify the validity and adaptability of the new model. The life prediction accuracy and material application range are satisfactory.FindingsBecause loading path and additional hardening of the material affect fatigue life, a new multiaxis fatigue life model based on the critical plane approach is proposed. And introducing a non-proportional additional damage coefficient, the joint influence of the load path and the additional hardening can be considered. The model's life prediction accuracy and material applicability were verified with multiaxial fatigue test data of eight materials and nine loads compared with the prediction accuracy of the Kandil–Brown–Miller (KBM) model and Fatemi–Socie (FS) model.Originality/valueThe physical meaning of the new model is clear, convenient for practical engineering applications.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference47 articles.

1. Additional cycle strain hardening and its relation to material structure, mechanical characteristics, and lifetime;International Journal of Fatigue,2007

2. Strain-life and crack propagation fatigue data from several Portuguese old metallic riveted bridges;Engineering Failure Analysis,2011

3. A rate-independent constitutive model for transient non-proportional loading;Journal of the Mechanics and Physics of Solids,1989

4. A critical plane approach to multiaxial fatigue damage including out of plane loading;Fatigue and Fracture of Engineering Materials and Structures,1988

5. Multiaxial fatigue of 16MnR steel;Journal of Pressure Vessel Technology-Transactions of The Asme,2009

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3