Abstract
PurposeA simulation framework that includes a finite element analysis (FEA) and computational fluid dynamics (CFD) model is generated to study the effect of unstable two-phase flow-induced vibrations at a vertical 90° pipe bend. The corresponding fluid-structure interaction (FSI) of an unstable flow may pose danger to the piping structure. This paper intends to discuss this interaction.Design/methodology/approachFour cases of flows under the slug flow and churn flow regimes were investigated. The flow regimes vary in superficial gas velocities with velocities from 0.978 m/s to 9.04 m/s, while the superficial liquid velocity is kept constant at 0.61 m/s. The pipe model consists of an internal diameter of 0.0525 m, a bend radius of 0.0762 m, and a stainless-steel pipe structure.FindingsResults show that the average unstable void fractions increase with the superficial gas velocities, but the peak frequencies were constant at 13 Hz for three of the cases. The total displacement and von Mises stress increase with a declining rate in each subsequent case, while the RMS of von Mises stress begins to stall at superficial gas velocities between 5 m/s and 9.04 m/s. The peak frequencies of von Mises stress decrease in each subsequent case.Originality/valueThe proposed model can be used to investigate the FSI effect of unstable void fractions at pipe bends and could assist in the development of piping systems in which the use of piping elements arranged close together are unavoidable.
Subject
Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Reference18 articles.
1. Two-phase flow-induced forces on bends in small scale tubes,2009
2. Forces on bends and T-joints due to multiphase flow,2010
3. Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modellin;Engineering Science and Technology, an International Journal,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献