Investigation of cotton fabric composites as a natural radar-absorbing material

Author:

Ayan Muhammet Çağrı,Kiriş Serap,Yapici Ahmet,Karaaslan Muharrem,Akgöl Oğuzhan,Altıntaş Olcay,Ünal Emin

Abstract

Purpose The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material (RAM) response. Cotton fabric biocomposite materials were compared with carbon fabric composite materials, which are good absorbers, in terms of mechanical and electromagnetic (EM) properties for that purpose. Design/methodology/approach The laminated composite plates were manufactured by using a vacuum infusion process. The EM tests were experimentally performed with a vector network analyzer to measure reflection, transmission and absorption ability of cotton fabric, carbon fabric and cotton–carbon fabric (side by side) composite plates between 3 and 18 GHz. The tensile and low-velocity impact tests were carried out to compare the mechanical properties of cotton fabric and carbon fabric composite plates. A scanning electron microscope was used for viewing the topographical features of fracture surfaces. Findings The cotton fabric composite plate exhibits low mechanical values, but it gives higher EM wave absorption values than the carbon fabric composite plate in certain frequency ranges. Comparing the EM absorption properties of the combination of cotton and carbon composites with those of the carbon composite alone, it appears that the cotton–carbon combination can be considered as a better absorber than the carbon composite in a frequency range from 12 to 18 GHz at Ku band. Originality/value This paper shows how cotton, which is a natural and easily supplied low-cost raw material, can be evaluated as a RAM.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3