Fatigue life prediction of ceramic-matrix composites

Author:

Li Longbiao

Abstract

Purpose This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven, at room and elevated temperatures. Design/methodology/approach Under cyclic loading, matrix multicracking and interface debonding occur upon first loading to fatigue peak stress, and the interface wear appears with increasing cycle number, leading to degradation of the interface shear stress and fibers strength. The relationships between fibers fracture, cycle number, fatigue peak stress and interface wear damage mechanism have been established based on the global load sharing (GLS) criterion. The evolution of fibers broken fraction versus cycle number curves of fiber-reinforced CMCs at room and elevated temperatures have been obtained. Findings The predicted fatigue life S–N curve can be divided into two regions, i.e. the Region I controlled by the degradation of interface shear stress and fibers strength and the Region II controlled by the degradation of fibers strength. Practical/implications The proposed approach can be used to predict the fatigue life and fatigue limit of unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven CMCs under cyclic loading. Originality/value The fatigue damage mechanisms and fibers failure model were combined together to predict the fatigue life and fatigue limit of fiber-reinforced CMCs with different fiber preforms.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3