Abstract
Purpose
This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven, at room and elevated temperatures.
Design/methodology/approach
Under cyclic loading, matrix multicracking and interface debonding occur upon first loading to fatigue peak stress, and the interface wear appears with increasing cycle number, leading to degradation of the interface shear stress and fibers strength. The relationships between fibers fracture, cycle number, fatigue peak stress and interface wear damage mechanism have been established based on the global load sharing (GLS) criterion. The evolution of fibers broken fraction versus cycle number curves of fiber-reinforced CMCs at room and elevated temperatures have been obtained.
Findings
The predicted fatigue life S–N curve can be divided into two regions, i.e. the Region I controlled by the degradation of interface shear stress and fibers strength and the Region II controlled by the degradation of fibers strength.
Practical/implications
The proposed approach can be used to predict the fatigue life and fatigue limit of unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven CMCs under cyclic loading.
Originality/value
The fatigue damage mechanisms and fibers failure model were combined together to predict the fatigue life and fatigue limit of fiber-reinforced CMCs with different fiber preforms.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献