Author:
Kosgey Edwin Cheruiyot,Kanny Krishnan,Mwangi Festus Maina
Abstract
Purpose
This study aims to understand how the facesheet size, orientation and core size influence the analytical failure mechanism mode of glass fibre reinforced polymer (GFRP)/polyvinyl chloride (PVC) sandwich structures subjected to three-point bending. The purpose of this study was to develop failure-mode map of GFRP/PVC sandwich structures. Sandwich structures with different facesheet and core thicknesses were used to develop the failure map.
Design/methodology/approach
The sandwich structure and facesheet were fabricated using a vacuum-assisted resin infusion method with core sizes of 10, 15 and 20 mm and facesheet thicknesses of 1.5 and 3 mm and were arranged in three different orientations: angle-ply, cross-ply and quasi-isotropic. The key failure modes that occur in sandwich structures were used to predict possible failures in the developed material. Analytical equations were used in MATLAB for each observed failure mode. The probable failure modes, namely, face yielding, core shear and indentation equations, were used to construct the failure maps and were compared with the experimental data.
Findings
The boundary of the two failure modes shifts with changes in the facesheet and core thicknesses. The theoretical stiffness of sandwich panels was higher than the experimental stiffness. Based on strength-to-weight ratio, specimens E10-4, A15-8 and E20-8 exhibited the best optimum values owing to their shorter distance to the boundary lines.
Originality/value
In this study, a failure map was used to predict the possible failure modes for different GFRP facesheet orientations and thicknesses and PVC core thickness sandwich structures. Little is known about the prediction of the failure modes of unidirectional GFRP arranged in different orientations and thicknesses and PVC core thicknesses for sandwich structures. Few studies have used failure mode maps with unidirectional GFRP oriented in angle-ply, cross-ply and quasi-isotropic directions as a facesheet for sandwich structures compared to bidirectional mats. This study can serve as a guide for the correct selection of materials during the design process of sandwich structures.
Reference33 articles.
1. Standard test method for core shear properties of sandwich constructions by beam flexure;ASTMC393/C393M,2020
2. Tensile test method for tensile properties of polymer matrix composite materials;ASTMD3039/D3039M,2000
3. Failure mode investigation of sandwich beams with functionally graded core;Composite Structures,2007
4. Creative design for sandwich structures: a review;International Journal of Advanced Robotic Systems,2020