Study on interior beam–column joint sub-assemblage under bi-directional loading using finite element analysis

Author:

Nagargoje Shashikant Mahadev,Mahajan Milinda Ashok

Abstract

Purpose The purpose of this paper is to study the shearing performance under bi-directional loading of an interior beam–column joint (BCJ) sub-assemblage using the finite element analysis (FEA) tool (midas fea), validated in this research. Design/methodology/approach The BCJ can be defined as an essential part of the column that transfers the forces at the ends of the members connected to it. The members of the rigid jointed plane frame resist external forces by developing twisting moment, bending moment, axial force and shear force in the frame members. On the type of joints, the response to the action of lateral loads depends on reinforced concrete (RC) framed structures. The joint is considered rigid if the angle between the members remains unchanged during the structural deformation. This work examined the shear deformation, load displacement and strength of a non-seismically detailed internal concentric RC joint using non-linear FEA. The bi-directional loading imposes the oblique compression zone on one joint corner. This joint core’s oblique compression strut mechanism differs significantly from that under unidirectional loading. The numerical results are compared with experimental results in this study, with the data published in the literature. Findings Numerical analysis results show that, in the comparative study of numerical and experimental values, the FEA tool predicts the behaviour of the RC BCJ well. The discrepancy between the experimental and numerical results amounts to 6 to 12% end displacement of the beam, 7% resultant joint shear force, 4.23% column bar strain and 0.70% hoop strain. Originality/value The current code of practice describes the joint sub-assemblage behaviour along the single axis individually. In the non-orthogonal system, the superposition of the two axes for joint space results in overlapping the stresses and, hence, the formation of the oblique strut. This may result in a reduction in the joint capacity under bi-directional loading. The behaviour must be explored in depth, and an attempt is made for further exploration.

Publisher

Emerald

Reference40 articles.

1. Design of structures for earthquake resistance;BS EN 1998 −1:2004 +A1,2013

2. Research on seismic design method of a beam-column joint in reinforced concrete space frame;IOP Conference Series: Earth and Environmental Science,2019

3. Considering the bi-directional effects and the seismic angle variations in building design,2000

4. Effect of bi-directional interaction on seismic demand of structures;Soil Dynamics and Earthquake Engineering,2013

5. Assessment of shear strength of interior reinforced concrete beam-column joint;Journal of EEA,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3