COVID-19 image transmission using convolutional neural networks based algorithms for medical applications

Author:

Ch Gangadhar,Ajay Nagendra Nama,Aaqib Syed Mutahar,Sulaikha C.M.,Kv Shaheena,Santoshachandra Rao Karanam

Abstract

Purpose COVID-19 would have a far-reaching impact on the international health-care industry and the patients. For COVID-19, there is a need for unique screening tests to reliably and rapidly determine who is infected. Medical COVID images protection is critical when data pertaining to computer images are being transmitted through public networks in health information systems. Design/methodology/approach Medical images such as computed tomography (CT) play key role in the diagnosis of COVID-19 patients. Neural networks-based methods are designed to detect COVID patients using chest CT scan images. And CT images are transmitted securely in health information systems. Findings The authors hereby examine neural networks-based COVID diagnosis methods using chest CT scan images and secure transmission of CT images for health information systems. For screening patients infected with COVID-19, a new approach using convolutional neural networks is proposed, and its output is simulated. Originality/value The required patient’s chest CT scan images have been taken from online databases such as GitHub. The experiments show that neural networks-based methods are effective in the diagnosis of COVID-19 patients using chest CT scan images.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3