Numerical modeling of liquid sloshing in flexible tank with FSI approach

Author:

Khouf Lydia,Benaouicha Mustapha,Seghir Abdelghani,Guillou Sylvain

Abstract

Purpose The paper aims to present a numerical modeling procedure for the analysis of liquid sloshing in a flexible tank subjected to an external excitation, with taking into account the effects of fluid–structure interaction (FSI). Design/methodology/approach A numerical model based on coupling a two-phase flow solver and an elastic solid solver is developed in OpenFOAM code. The Arbitrary Lagrangian–Eulerian formulation is adopted for the two-phase Navier–Stokes equations in a moving domain. The volume of fluid (VOF) method is applied for the air–liquid interface tracking. The finite volume method is used for the spatial discretization of both the fluid and the structure dynamics equations. The FSI coupling problem is solved by an explicit coupling scheme. The model is validated for linear and nonlinear sloshing cases. Then, it is used to analyze the effects of the liquid sloshing on the dynamic response of the tank and the effects of the tank flexibility on the liquid sloshing. Findings The obtained results show that the flexibility of the tank walls amplifies the amplitude of the sloshing and increases the fluctuation period of the air–liquid interface. Furthermore, it is found that the bending moment acting on the tank walls may be underestimated when rigid walls assumption is adopted as usually done in sloshing tank modeling. Also, tank walls flexibility causes a phase shift in the free surface dynamic response. Originality/value A review of previous studies on liquid sloshing in flexible tanks revealed that FSI effects have not been clearly and comprehensively analyzed for large-amplitude liquid sloshing. Many physical and numerical aspects of this problem still require clarifications and enhancements. The added value of the present work and its originality lie in the investigation of large-amplitude liquid sloshing in flexible tanks by using a staggered coupling approach. This approach is carried out by an original combination of a linear solid solver with a two phase fluid solver in OpenFOAM code. In addition, FSI effects on some response quantities, identified and analyzed herein, have not been found in the previous works.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference56 articles.

1. Acedo, I.G. (2019), “Development of a finite volume method for elastic materials and fluid-solid coupled applications”, Doctoral thesis, Universitat Polit`ecnica de Catalunya.

2. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid;Mechanics Research CommunicationsISSN 00936413,2010

3. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution;Physical Review E,2009

4. Formulas for natural frequency and mode shape

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3