Constructing the social network prediction model based on data mining and link prediction analysis

Author:

Gao Yuxian

Abstract

Purpose The purpose of this paper is to apply link prediction to community mining and to clarify the role of link prediction in improving the performance of social network analysis. Design/methodology/approach In this study, the 2009 version of Enron e-mail data set provided by Carnegie Mellon University was selected as the research object first, and bibliometric analysis method and citation analysis method were adopted to compare the differences between various studies. Second, based on the impact of various interpersonal relationships, the link model was adopted to analyze the relationship among people. Finally, the factorization of the matrix was further adopted to obtain the characteristics of the research object, so as to predict the unknown relationship. Findings The experimental results show that the prediction results obtained by considering multiple relationships are more accurate than those obtained by considering only one relationship. Research limitations/implications Due to the limited number of objects in the data set, the link prediction method has not been tested on the large-scale data set, and the validity and correctness of the method need to be further verified with larger data. In addition, the research on algorithm complexity and algorithm optimization, including the storage of sparse matrix, also need to be further studied. At the same time, in the case of extremely sparse data, the accuracy of the link prediction method will decline a lot, and further research and discussion should be carried out on the sparse data. Practical implications The focus of this research is on link prediction in social network analysis. The traditional prediction model is based on a certain relationship between the objects to predict and analyze, but in real life, the relationship between people is diverse, and different relationships are interactive. Therefore, in this study, the graph model is used to express different kinds of relations, and the influence between different kinds of relations is considered in the actual prediction process. Finally, experiments on real data sets prove the effectiveness and accuracy of this method. In addition, link prediction, as an important part of social network analysis, is also of great significance for other applications of social network analysis. This study attempts to prove that link prediction is helpful to the improvement of performance analysis of social network by applying link prediction to community mining. Originality/value This study adopts a variety of methods, such as link prediction, data mining, literature analysis and citation analysis. The research direction is relatively new, and the experimental results obtained have a certain degree of credibility, which is of certain reference value for the following related research.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference18 articles.

1. An efficient algorithm for link prediction in temporal uncertain social networks;Information Sciences,2016

2. Recommendations in location-based social networks: a survey;GeoInformatica,2015

3. Callous-unemotional traits, relational and social aggression, and interpersonal maturity in a sample of behaviorally disordered adolescents;Journal of Applied School Psychology,2018

4. OWA operator-based link prediction ensemble for social network;Expert Systems with Applications,2015

5. Prediction and explanation in social systems;Science,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3