Author:
Lee Sanghoon,Yang Yosheph,Kim Jae Gang
Abstract
Purpose
The Fay and Riddell (F–R) formula is an empirical equation for estimating the stagnation-point heat flux on noncatalytic and fully catalytic surfaces, based on an assumption of equilibrium. Because of its simplicity, the F–R has been used extensively for reentry flight design as well as ground test facility applications. This study aims to investigate the uncertainties of the F-R formula by considering velocity gradient, chemical species at the boundary layer edge, and the thermochemical nonequilibrium (NEQ) behind the shock layer under various hypersonic NEQ flow environments.
Design/methodology/approach
The stagnation-point heat flux calculated with the F–R formula was evaluated by comparison with thermochemical NEQ calculations and existing flight experimental values.
Findings
The comparisons showed that the F–R underestimated the noncatalytic heat flux, because of the chemical composition at the surface. However, for fully catalytic heat flux, the F–R results were similar to values of surface heat flux from thermochemical NEQ calculations, because the F–R formula overestimates the diffusive heat flux. When compared with the surface heat flux results obtained from flight experimental data, the F–R overestimated the fully catalytic heat flux. The error was 50% at most.
Originality/value
The results provided guidelines for the F–R calculations under hypersonic flight conditions and for determining the approximate error range for noncatalytic and fully catalytic surfaces.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference80 articles.
1. Radiative viscous-shock-layer analysis of Fire, Apollo, Apollo, and PAET flight data,1985
2. Unsteady simulation of hypersonic flow around a heat flux probe in ground testing conditions;International Journal of Heat and Mass Transfer,2017
3. Modification of superalloy honeycomb thermal protection system;International Journal of Numerical Methods for Heat and Fluid Flow,2020
4. Aerothermodynamic analyses of hypersonic, blunt-body flows;Journal of Spacecraft and Rockets,1999
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献