Numerical simulation on sprue distributions during cladding casting process

Author:

Han Xing,Zhang Haitao,Shao Bo,Wang Dongtao,Cheng Longgang,Guo Yadong,Qin Ke,Cui Jianzhong

Abstract

Purpose The purpose of this paper is to investigate the influence of sprue distributions on the flow field and temperature field of the cladding casting process and verify the simulation results by experiments. Design/methodology/approach A steady-state mathematic model for the coupling of fluid flow, heat transfer and solidification to describe the process of cladding casting was present. The effect of sprue distributions on melt flow and temperature field was discussed. Based on the numerical simulation results, the cladding billet was prepared successfully. Moreover, the model has been verified against by temperature measurements during the cladding casting process. Findings There is a good agreement between the measured and calculated results. The homogeneity of melt flow determines the formability of cladding billets and circular temperature difference affects the bonding of the two alloys. The AA4045/AA3003 cladding billet with no defects in size of f140/f110 mm was fabricated successfully. The alloy elements diffused across the interface and formed diffusion layer with a thickness of 15 µm. The interface bonding strength is higher than the tensile strength of AA3003, indicating the metallurgical bonding between two alloys. Research limitations/implications The casting parameters are limited to the aluminum alloy cladding billet in size of f140/f110 mm in this paper. Originality/value There are few reports of cladding billet, which are used to prepare condense pipes of automotive engines. The effect of distribution schemes on the cladding casting process is rarely studied.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Investigation of cold rolling influence on mechanical properties of explosive-welded Al/Cu bimetal;Materials Science and Engineering A,2012

2. A numerical study of the direct-chill co-casting of aluminum ingots via FusionTM technology;Metallurgical and Materials Transactions B,2013

3. Novelis fusion process: breakthrough in the simultaneous DC casting of multiple aluminum alloy layers for rolling ingot;Light Metal Age,2006

4. Corrosion of welded joints of bimetallic composite tube in simulated offshore gas field environment;International Journal of Numerical Methods for Heat & Fluid,2014

5. Numerical issues in modeling macrosegregation during DC casting of a multi-component aluminium alloy;International Journal of Numerical Methods for Heat & Fluid,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3