On maximum achievable speeds for field solvers

Author:

Löhner Rainald,D. Baum Joseph

Abstract

Purpose – Prompted by the empirical evidence that achievable flow solver speeds for large problems are limited by what appears to be a time of the order of O(0.1) sec/timestep regardless of the number of cores used, the purpose of this paper is to identify why this phenomenon occurs. Design/methodology/approach – A series of timing studies, as well as in-depth analysis of memory and inter-processors transfer requirements were carried out for a typical field solver. The results were analyzed and compared to the expected performance. Findings – The analysis shows that at present flow speeds per core are already limited by the achievable transfer rate to RAM. For smaller domains/larger number of processors, the limiting speed of CFD solvers is given by the MPI communication network. Research limitations/implications – This implies that at present, there is a “limiting useful size” for domains, and that there is a lower limit for the time it takes to update a flowfield. Practical implications – For practical calculations this implies that the time required for running large-scale problems will not decrease markedly once these applications migrate to machines with hundreds of thousands of cores. Originality/value – This is the first time such a finding has been reported in this context.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking of state-of-the-art HPC Clusters with a Production CFD Code;Proceedings of the Platform for Advanced Scientific Computing Conference;2020-06-29

2. Simple Fault-tolerant Computing for Field Solvers;International Journal of Computational Fluid Dynamics;2020-06-09

3. The simulation of dust effects from fragmenting charges;International Journal of Numerical Methods for Heat & Fluid Flow;2016-05-03

4. An embedded strategy for the analysis of fluid structure interaction problems;Computer Methods in Applied Mechanics and Engineering;2016-03

5. Scaling Up Multiphysics;Computational Methods in Applied Sciences;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3