Author:
Yigit Akargun Hayri,Sert Cuneyt
Abstract
Purpose
– The purpose of this paper is to demonstrate successful use of least-squares finite element method (LSFEM) with h-type mesh refinement and coarsening for the solution of two-dimensional, inviscid, compressible flows.
Design/methodology/approach
– Unsteady Euler equations are discretized on meshes of linear and quadratic triangular and quadrilateral elements using LSFEM. Backward Euler scheme is used for time discretization. For the refinement of linear triangular elements, a modified version of the simple bisection algorithm is used. Mesh coarsening is performed with the edge collapsing technique. Pressure gradient-based error estimation is used for refinement and coarsening decision. The developed solver is tested with flow over a circular bump, flow over a ramp and flow through a scramjet inlet problems.
Findings
– Pressure difference based error estimator, modified simple bisection method for mesh refinement and edge collapsing method for mesh coarsening are shown to work properly with the LSFEM formulation. With the proper use of mesh adaptation, time and effort necessary to prepare a good initial mesh reduces and mesh independency control of the final solution is automatically taken care of.
Originality/value
– LSFEM is used for the first time for the solution of inviscid compressible flows with h-type mesh refinement and coarsening on triangular elements. It is shown that, when coupled with mesh adaptation, inherent viscous dissipation of LSFEM technique is no longer an issue for accurate shock capturing without unphysical oscillations.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献