A comparison of topology optimization and genetic algorithms for the optimization of thermal energy storage composites

Author:

Badenhorst Heinrich

Abstract

Purpose The purpose of this paper is to apply two optimization methods to the issue of sensible energy store design. Design/methodology/approach This paper is a comparison of topology optimization and genetic algorithms. Findings Genetic algorithms are prone to converge to local maxima while requiring significantly longer convergence times compared to topology optimization. Topology optimization resulted in structures representing parallel sheets, which are as thin as the grid allows. These configurations can maintain the maximum surface area between the low and high conductivity materials at high refinement, resulting in the best performance. Practical implications Time required for 99 per cent store discharge is decreased by 70 per cent using a 50 × 50 optimization grid at a loading of 10 Vol.%. Originality/value These approaches have not been compared nor applied to this specific problem before. Value is in the key finding that maximization of surface area is only possible with fins/sheets and not tree structures. This dictates the optimal solution for dynamic behaviour.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3