Fluid mechanics and sound generation for lung-clearance therapy

Author:

Gorman John,Sparrow Eph,Krautbauer Kevin

Abstract

Purpose The study described here aims to set forth an analysis approach for a specific biomedical therapeutic device principally involving fluid mechanics and resulting sound generation. The function of the therapeutic device is to clear mucus from the airways of the lungs. Clearance of the airways is a primary means of relief for cystic fibrosis and is also effective in less profound dysfunctions such as asthma. The complete system consists of a device to periodically pulse air pressure and a vest that girdles the abdomen of the patient and receives and discharges the pulsating airflow. The source of pulsed air can be tuned both with respect to the amplitude and frequency of the pressure pulsations. Design/methodology/approach The key design tools used here are computational fluid dynamics and the theory of turbulence-based sound generation. The fluid flow inside of the device is multidimensional, unsteady and turbulent. Findings Results provided by the fluid mechanic study include the rates of fluid flow between the device and the inflatable vest, the rates of air supplied to and extracted from the device, the fluid velocity magnitudes and directions that result from the geometry of the device and the magnitude of the turbulence generated by the fluid motion and the rotating component of the device. Both the velocity magnitudes and the strength of the turbulence contribute to the quantitative evaluation of the sound generation. Originality/value A comprehensive literature search on this type of therapeutic device to clear mucus from the airways of the lungs revealed no previous analysis of the fluid flow and sound generation inside of the device producing the pulsed airflow. The results presented in this paper pinpoint the locations and causes of sound generation that can cause audible discomfort for patients.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

1. Perforated plates for fluid management: plate geometry effects and flow regimes;International Journal of Thermal Sciences,2014

2. Beigmoradi, S. (2015), “Aerodynamic drag and noise minimization of rear end parameters in a simplified car model utilizing robust parameter design method”, SAE Technical Paper No. 2015-01-1360.

3. Structure and function of the mucus clearance system of the lung;Cold Spring Harbor Perspectives in Medicine,2013

4. High-frequency assisted airway clearance;Respiratory Care,2007

5. Modeling human respiratory impedance;IEEE Engineering in Medicine and Biology Magazine,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3