A peg-in-hole controller for cable-driven serial robots with compliant wrist based on cable tensions and joint positions

Author:

Lou Ya'nan,Quan Pengkun,Lin Haoyu,Liang Zhuo,Wei Dongbo,Di Shichun

Abstract

Purpose This purpose of this paper is to design a peg-in-hole controller for a cable-driven serial robot with compliant wrist (CDSR-CW) using cable tensions and joint positions. The peg is connected to the robot link through a CW. It is required that the controller does not rely on any external sensors such as 6-axis wrist force/torque (F/T) sensor, and only the compliance matrix’s estimated value of the CW is known. Design/methodology/approach First, the peg-in-hole assembly system based on a CDSR-CW is analyzed. Second, a characterization algorithm using micro cable tensions and joint positions to express the elastic F/T at the CW is established. Next, under the premise of only knowing the compliance matrix’s estimate, a peg-in-hole controller based on force/position hybrid control is proposed. Findings The experiment results show that the plug contact F/T can be tracked well. This verifies the validity and correctness of the characterization algorithm and peg-in-hole controller for CDSR-CWs in this paper. Originality/value First, to the authors’ knowledge, there is no relevant work about the peg-in-hole assembly task using a CDSR-CW. Besides, the proposed characterization algorithm for the elastic F/T makes the peg-in-hole controller get rid of the dependence on the F/T sensor, which expands the application scenarios of the peg-in-hole controller. Finally, the controller does not require an accurate compliance matrix, which also increases its applicability.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference33 articles.

1. Experimental investigation of vibratory assembly with passive compliance;Mechanika,2011

2. Towards variable impedance assembly: the VSA Peg-Inhole,2012

3. Modelling and control of peg-in-hole assembly performed by a translational robot,2002

4. Research on the intelligent recognition system of printing roller surface defects based on machine vision,2020

5. Realizing human-like manipulation with a musculoskeletal system and biologically inspired control scheme;Neurocomputing,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3