A knowledge-based real-time scheduling system for steam turbine assembly under CPS environment

Author:

Wang Teng,Hu Xiaofeng,Zhang Yahui

Abstract

Purpose Steam turbine final assembly is a dynamic process, in which various interference events occur frequently. Currently, data transmission relies on oral presentation, while scheduling depends on the manual experience of managers. This mode has low information transmission efficiency and is difficult to timely respond to emergencies. Besides, it is difficult to consider various factors when manually adjusting the plan, which reduces assembly efficiency. The purpose of this paper is to propose a knowledge-based real-time scheduling system under cyber-physical system (CPS) environment which can improve the assembly efficiency of steam turbines. Design/methodology/approach First, an Internet of Things based CPS framework is proposed to achieve real-time monitoring of turbine assembly and improve the efficiency of information transmission. Second, a knowledge-based real-time scheduling system consisting of three modules is designed to replace manual experience for steam turbine assembly scheduling. Findings Experiments show that the scheduling results of the knowledge-based scheduling system outperform heuristic algorithms based on priority rules. Compared with manual scheduling, the delay time is reduced by 43.9%. Originality/value A knowledge-based real-time scheduling system under CPS environment is proposed to improve the assembly efficiency of steam turbines. This paper provides a reference paradigm for the application of the knowledge-based system and CPS in the assembly control of labor-intensive engineering-to-order products.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3