Numerical simulation of fracture characteristics of jointed rock masses under blasting load

Author:

Liu Chao,Yang Mingyang,Han Haoyu,Yue Wenping

Abstract

Purpose To study fracture characteristics of jointed rock masses under blasting load, the RFPA2D analysis software for dynamic fracture of rocks based on the finite element method and statistical damage theory was used. Design/methodology/approach On this basis, this research simulated the fracture process of rock masses in blasting with different joint geometrical characteristics and mainly analysed the influences of distance from joints to blasting holes, the length of joints, the number of joints and joint angle on fracture of rock masses. Findings The calculation results show that with the constant increase of the distance from joints to blasting holes, the influences of joints on blasting effects of rock masses gradually reduced. Rock masses with long joints experienced more serious damages than those with short joints. Damages obviously increased with the changing from rock masses without joints to rock masses with joints, and when there were three joints, the further increase of the number of joints had unobvious changes on blasting effects of rock masses. Joints showed significant guidance effect on the propagation of cracks in blasting: promoting propagation of main vertical cracks deflecting to the ends of joints. Originality/value The research results are expected to provide some theoretical bases in practical application of engineering blasting.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference37 articles.

1. Wave and fracture propagation in continuum and faulted rock masses: distinct element modelling;Arabian Journal of Geosciences,2014

2. Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast;Computers and Geotechnics,2017

3. Controlled blasting in jointed rocks,1994

4. Finite element analysis of blast-induced fracture propagation in hard rocks;Computers and Structures,2017

5. A study of UDEC modelling for blast wave propagation in jointed rock masses;International Journal of Rock Mechanics and Mining Sciences,1998

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3