Local government revenue forecasting methods: competition and comparison

Author:

Williams Daniel W.,Kavanagh Shayne C.

Abstract

This study examines forecast accuracy associated with the forecast of 55 revenue data series of 18 local governments. The last 18 months (6 quarters; or 2 years) of the data are held-out for accuracy evaluation. Results show that forecast software, damped trend methods, and simple exponential smoothing methods perform best with monthly and quarterly data; and use of monthly or quarterly data is marginally better than annualized data. For monthly data, there is no advantage to converting dollar values to real dollars before forecasting and reconverting using a forecasted index. With annual data, naïve methods can outperform exponential smoothing methods for some types of data; and real dollar conversion generally outperforms nominal dollars. The study suggests benchmark forecast errors and recommends a process for selecting a forecast method.

Publisher

Emerald

Subject

Strategy and Management,Public Administration

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microfounded Tax Revenue Forecast Model with Heterogeneous Population and Genetic Algorithm Approach;Computational Economics;2023-04-21

2. For Better or Worse? Revenue Forecasting with Machine Learning Approaches;Public Performance & Management Review;2022-05-22

3. Regional Government Revenue Forecasting: Risk Factors of Investment Financing;Risks;2021-11-23

4. Examining the Determinants of Expenditure Forecasts;International Journal of Public Administration;2021-05-04

5. Small Local Government Revenue Forecasting;The Palgrave Handbook of Government Budget Forecasting;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3