Design and behaviour of R.C. beams to ACI318-and-SBC304; and EC2 codes when subjected to asymmetric loading

Author:

E. Alluqmani Ayed

Abstract

Purpose – Reinforced concrete (R.C.) beams are part of the structure so their design depends on the structural code and its requirements. In this paper, two simply supported R.C. beams were designed in terms of flexural and shear strength design requirements and investigated in terms of deflections and crack widths, when subjected to two asymmetric concentrated loadings, where one load is double the other one. Both beams had dimensions of 3,500 mm length, 200 mm width, and 300 mm height. The first beam (beam B1) was designed according to the combination of the structural requirements of American and Saudi building codes (ACI318-and-SBC304), while the second beam (beam B2) was designed according to the structural requirements of Eurocode (EC2). The paper aims to discuss these issues. Design/methodology/approach – The design of ultimate capacity (section capacity) to design both flexure and shear capacity according to the design provisions in EC2 code deals with the Ultimate Limit State Design Approach, while it deals with the Ultimate Strength Design Approach according to the design provisions in both ACI318 and SBC304 codes. In the serviceability (mid-span deflection and flexural crack width) check, the three codes deal with the Serviceability Limit State Design Approach. Findings – The laboratory behaviour of both test beams was as expected in flexure and failed in shear, but there was more shear cracks in the left shear span for both beams. This refers to the left applied loading and the spacing of shear links, where the failure occurred at the higher loading points. Perhaps, if the number of links was increased in the left side of the beam during the manufacture and reinforcing of the beam, the failure loading will be delayed and the diagonal cracks will be decreased. Originality/value – From this study, it was concluded that: the ACI318 and SBC304 design approaches are safer than the EC2 design approach. The EC2 design approach is more economic than the ACI318 and SBC304 design approaches. The structural behaviour of both test beams was as expected in flexure but both beams failed in shear. The shear failure was in the left side of both test beams which was referred to a high loading point. Diagonal cracks followed the applied loading until both beams reached to the failure.

Publisher

Emerald

Subject

General Engineering

Reference25 articles.

1. ACI318 (1984), Commentary on Building Code Requirements for Reinforced Concrete (ACI318-83), ACI Committee 318, Standard Building Code, Second Printing, American Concrete Institute, Farmington Hills, MI.

2. ACI318 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI.

3. ACI318-02 (2002), Building Code Requirements for Structural Concrete, American Concrete Institute, Detroit, MI.

4. Aitken, M.W. (2009), “Investigation of long reinforced concrete beams designed to the unified design approach”, BEng thesis, Department of Civil and Structural Engineering, Heriot-Watt University, Edinburgh, pp. 1-12 and 33-50.

5. Al.Dywany, H.R. (2010), “Behaviour of wide reinforced concrete beam in shear”, MEng dissertation, University Technology Malaysia (UTM), Johor Bahru.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3