Predicting credit risk on the basis of financial and non-financial variables and data mining

Author:

Khemakhem Sihem,Boujelbene Younes

Abstract

PurposeData mining for predicting credit risk is a beneficial tool for financial institutions to evaluate the financial health of companies. However, the ubiquity of selecting parameters and the presence of unbalanced data sets is a very typical problem of this technique. This study aims to provide a new method for evaluating credit risk, taking into account not only financial and non-financial variables, but also the class imbalance.Design/methodology/approachThe most significant financial and non-financial variables were determined to build a credit scoring model and identify the creditworthiness of companies. Moreover, the Synthetic Minority Oversampling Technique was used to solve the problem of class imbalance and improve the performance of the classifier. The artificial neural networks and decision trees were designed to predict default risk.FindingsResults showed that profitability ratios, repayment capacity, solvency, duration of a credit report, guarantees, size of the company, loan number, ownership structure and the corporate banking relationship duration turned out to be the key factors in predicting default. Also, both algorithms were found to be highly sensitive to class imbalance. However, with balanced data, the decision trees displayed higher predictive accuracy for the assessment of credit risk than artificial neural networks.Originality/valueClassification results depend on the appropriateness of data characteristics and the appropriate analysis algorithm for data sets. The selection of financial and non-financial variables, as well as the resolution of class imbalance allows companies to assess their credit risk successfully.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance,Finance,Accounting

Reference102 articles.

1. Credit scoring, statistical techniques and evaluation criteria: a review of the literature;Intelligent Systems in Accounting, Finance and Management,2011

2. Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks;Decision Support Systems,2008

3. A genetic programming approach for bankruptcy prediction using a highly unbalanced database;EvoWorkshops 2007: Applications of Evolutionary Computing,2007

4. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy;Journal of Finance,1968

5. ZETA analysis: a new model to identify bankruptcy risk of corporations;Journal of Banking and Finance,1977

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3