Author:
Wang Jian,Shen Jing Feng,Fan Ya Wen
Abstract
Purpose
The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The purpose of this study is to investigate the static characteristics and effect factors affecting SHSBs by fluid lubrication.
Design/methodology/approach
Based on the theories of fluid lubrication, the Reynolds equation of general Newtonian fluid is derived to obtain the steady-state lubrication equation. The system is solved by the finite difference method and the relaxation iterative method on the staggered grid to obtain the thickness and the pressure distribution of the oil film. The radial and axial load capacities of SHSBs are determined by the pressure field integration over the spherical surface.
Findings
The results show that the parameters such as oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number affecting the static characteristics of bearings are significant and the cross-coupling effect exists.
Originality/value
The lubrication model of SHSB is established to analyze the pressure distribution with a variety of oil film thickness. The laws of oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number on the load capacities are researched.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Reference13 articles.
1. An experimental and theoretical analysis of a foil-air bearing rotor system;Journal of Sound and Vibration,2018
2. Modeling a lubricated full-floating pin bearing in planar multibody systems;Tribology International,2019
3. Design of spherical spiral groove bearings for a high-speed air-lubricated gyroscope;Tribology Transactions,2015
4. Flow field calculation and dynamic characteristic analysis of spherical hybrid gas bearings based on passive grid;Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019
5. Analysis of dynamic characteristics and stability prediction of gas bearings;Industrial Lubrication and Tribology,2017
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献